
Commentary

Wolf Population Regulation Revisited—Again
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ABSTRACT The long-accepted conclusion that wolf density is regulated by nutrition was recently
challenged, and the conclusion was reached that, at greater levels of prey biomass, social factors such as
intraspecific strife and territoriality tend to regulate wolf density. We reanalyzed the data used in that study
for 2 reasons: 1) we disputed the use of 2 data points, and 2) because of recognized heteroscedasticity, we used
weighted-regression analysis instead of the unweighted regressions used in the original study. We concluded
that the data do not support the hypothesis that wolf densities are regulated by social factors. Published 2014.
This article is a U.S. Government work and is in the public domain in the USA.
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Ever since Pimlott (1967) proposed that wolf (Canis lupus)
populations are regulated by social factors, researchers have
examined that thesis. Early studies tended to accept the
possibility (Mech 1970, Pimlott 1970,Wolfe andAllen 1973,
Van Ballenberghe et al. 1975), but eventually workers started
to question it. Packard andMech (1980) discussed the role of
vulnerable-prey biomass in regulating wolf populations and
concluded that food supply was more important than
previously recognized. Vulnerable-prey biomass is a valid
concept but is dynamic and rarely measurable (Fuller
et al. 2003). However prey biomass itself has been used as
a proxy for vulnerable-prey biomass. Keith (1983) found a
strong, significant, linear relationship between prey biomass
and wolf density based on data from 7 studies. Fuller (1989)
confirmed the relationship based on 25 studies, and Fuller
et al. (2003), based on 32. These investigations strongly
suggested that food supply rather than social factors was
regulating wolf density. However, these researchers did not
specifically investigate alternative models that might also
provide an equivalent or improved fit to the data. Thus,
specific testing of competing hypotheses had not occurred.
Recently Cariappa et al. (2011) reanalyzed the data that

Fuller et al. (2003:Table 6.2) used in their analysis and found
that nonlinear asymptotic models fit the data at least as well
as a linear model. Those authors tested Type 1 (linear), Type
2 (monotonically increasing with a monotonically decreasing
slope and an asymptote), and Type 3 (sigmoid with an
asymptote) models (Messier 1995). Asymptotic relationships
between prey biomass, represented by a biomass index
(BMI), and wolf density imply that at greater wolf densities,

factors other than food supply, presumably social factors,
regulate wolf density. Furthermore, Cariappa et al. (2011)
found that when they excluded 4 data points that represented
exploited or expanding wolf populations, Types 2 and 3
asymptotic models better fit the data than the Type 1 linear
model. Cariappa et al. (2011:726) concluded that “… the
data suggested that wolf populations are self-regulated rather
than limited by prey biomass by at least a 3:1 margin.”
We agreed with the removal of the 4 data points, but we

found 2 more points from the Fuller et al. (2003) table that
we believe should also be removed, those representing
Algonquin Provincial Park in 1969 (Pimlott et al. 1969,
Kolenosky 1972) and in 1988–1992 (Forbes and
Theberge 1995). We think these data are not valid for
inclusion because the wolf involved there is smaller
(Way 2013) than the wolves in the rest of the study areas
and is generally thought to represent a different species more
closely related to the coyote (Canis latrans; Wilson
et al. 2000, Fain et al. 2010, Chambers et al. 2012, but cf
vonHoldt et al. 2011 and Rutledge et al. 2012).
To replicate the analyses of Cariappa et al. (2011), we first

reanalyzed both the original data (designated Cariappa-all)
and the pruned data from Fuller et al. (2003) (designated
Cariappa-pruned) that Cariappa et al. (2011) used, and then
we conducted the same analysis with the 2 Algonquin Park
points pruned (designated Present-pruned). Because of the
heteroskedasticity that Cariappa et al. (2011) recognized but
did not deal with, we also reanalyzed the data using weighted
regressions. These analyses yielded a different conclusion.

METHODS

The analyses included fitting the 3 models used by Cariappa
et al. (2011),

Type 1: yi ¼ b1 � xi þ ei ð1Þ

Type 2: yi ¼
b1 � xi
b2 þ xi

þ ei ð2Þ
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Type 3: yi ¼
b1 � x2i
b2 þ x2i

þ ei ð3Þ

where yi denotes wolves/1,000 km
2, xi denotes BMI, the bs

are parameters to be estimated, and ei is a residual term
assumed to follow a Gaussian (normal) distribution,
N ð0; s2

i Þ. We also fit a fourth, quadratic model,

Quad: yi ¼ b1 � xi þ b2 � x2i þ ei ð4Þ

to facilitate a statistically rigorous test for curvature in the
relationship between wolf density and BMI.
We fit all regression models using maximum likelihood

methods for each of the 3 datasets under the homoscedas-
ticity assumption of a Gaussian distributed, constant residual
variance (i.e., for all i, s2

i ¼ s2). Under this assumption,
maximum likelihood and least squares parameter estimates
are identical. We calculated the same metrics reported by
Cariappa et al. (2011): the natural logarithm of the Gaussian
likelihood,

lnðlÞ ¼ � n

2
lnð2 � p � s2Þ � 1

2 � s2

Xn
i¼1

ðyi � ŷÞ2 ð5Þ

where l denotes likelihood and n denotes sample size;
Akaike’s Information Criterion,

AIC ¼ 2 � p� 2 � lnðlÞ ð6Þ

where p denotes the number of estimated parameters: for the
Type 1 model, p¼ 2 (b1, s); for the Type 2, Type 3, and
Quad models, p¼ 3 (b1, b2, s);
small sample Akaike’s Information Criterion,

AICc ¼ AICþ 2 � p � ðpþ 1Þ
n� p� 1

ð7Þ

and
Akaike weights,

WTj ¼ expð�ð1=2ÞDjÞP3
i¼1

expð�ð1=2ÞDiÞ
ð8Þ

where j denotes a Type jmodel,Dj ¼ AICc;j � AICc;min, and
AICc,min is the minimum AICc value among the 3 models.
The Akaike weights represent normalized, relative like-
lihoods and are useful for comparing models (Burnham and
Anderson 2002:Section 2.9.1). Comparison of metrics for
the Cariappa-all and Cariappa-pruned datasets as we
calculated them and as reported by Cariappa et al. (2011)
constituted a consistency check for the methods.
Graphs of residuals versus BMI for the 12 combinations of

the 3 datasets and the 4 models all exhibited clear evidence of
heteroskedasticity (Fig. 1). In such cases, the assumption that
s2
i ¼ s2 is violated, and weighted analyses should be used

whereby each observation is weighted by the inverse of its
residual variance, that is, the weight for the ith observation is
wi ¼ s�2

i (Draper and Smith 1966). Preliminary analyses
indicated that residual variances were approximately propor-
tional to BMI for all datasets and models. Therefore, to
accommodate heteroscedasticity, we weighted all observa-

tions by the inverse of their corresponding BMI for all
analyses. We recalculated the same metrics described in
Equations (5)–(8) using the heteroscedastic form of ln(l):

lnðlÞ ¼ � 1

2

Xn
i¼1

lnð2 � p � s2
i Þ þ

yi � ŷ

si

� �2
" #

ð9Þ

In addition, for the Types 2 and 3 models, we explicitly
estimated the asymptotes, b1, and their standard errors.
The issue of whether the Type 1 linear model or either of

the Type 2 or Type 3 nonlinear asymptotic models better
represents the relationship between wolf density and BMI is
closely related to the issue of whether the relationship is
linear or exhibits curvature. If the quality of fit of an
asymptotic model is statistically significantly greater than the
fit of a linear model, then curvature in the relationship could
be concluded; otherwise, curvature cannot be concluded and
in the interest of parsimony the simpler linear model would
generally be selected. Statistically rigorous tests of whether
the fit of a more complex model is better than the fit of a less
complex model are possible only if the less complex model
form is nested within the more complex model form. For
example, the Type 1 linear model is nested in the Quad
model because the latter can be reduced to the former simply
by eliminating the quadratic term. Therefore, if the fit of the
Quad model is statistically significantly better than the fit of
the Type 1 model, then a conclusion of curvature in the
relationship is justified. However, because the Type 1 linear
model is not nested in either the Types 2 or 3 models,
statistical significance cannot be assessed by comparing the
fits of these models; hence the use of the Quad model.
Although the Quad model is not necessarily asymptotic, it
does permit a considerable degree of flexibility and is
appropriate for assessing curvature. Of importance, the Quad
model is used only for this purpose of assessing curvature; we

Figure 1. Residuals versus ungulate biomass index (BMI) in white-tailed
deer equivalents/km2 (Fuller et al. 2003:Table 6.2) for the type-1
unweighted linear model and the present-pruned dataset. The present-
pruned data set includes all 28 North American wolf populations used by
Cariappa et al. (2011) except 2 from Algonquin Park, Ontario (Fuller
et al. 2003:Table 6.2).
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do not suggest that it should be used instead of either the
Type 2 or Type 3 models in the case that significant curvature
is detected.
When models are nested, the likelihood ratio test may be

used to test whether the fit of a more complex model is
statistically significantly greater than the fit of a less complex
nested model (Strawderman 1983). The test statistic is
calculated as,

D ¼ 2 � ½lnðl1Þ � lnðl2Þ�; ð10Þ
where l1 and l2 are the likelihoods for the fits of the less
complex and more complex models, respectively. We used
the likelihood ratio test to test for curvature by testing
whether the fit of the Quad model, which can accommodate
curvature, was statistically significantly better than the fit of
the Type 1 linear model, which cannot accommodate
curvature. For this study, D may be assumed to follow a x2

distribution with degrees of freedom, df, equal to the
difference in the number of parameters for the models being
compared; in this case, df¼ 1.

RESULTS

For the unweighted analyses, using p¼ 1, 2, and 2 for the
Type 1, 2, and 3 models as did Cariappa et al. (2011), our
estimates of the metrics described in Equations (5)–(8) for
the Cariappa-all and Cariappa-pruned datasets were, with 1
minor exception, within rounding errors of those reported by
Cariappa et al. (2011) indicating consistency with respect to
methods. When using p¼ 2, 3, and 3 for the Type 1, 2, and 3
models as is correct, the Type 1 linear model was superior for
the Cariappa-all and Present-all datasets, but the Type 2
asymptotic model was superior for the Cariappa-pruned
dataset (Table 1). For each dataset, 0:50 � WT � 0:60 for

the superior model, but at least 1 other model had
WT � 0:20.
For the weighted analyses, the Type 2 model had greater

WT for the Cariappa-all and Present datasets, whereas the
Type 3 model had greater WT for the Cariappa-pruned
dataset. For each dataset, 0:48 � WT � 0:67 for the
asymptotic model, but 0:20 � WT � 0:30 for the Type 1
linear model. Thus, the evidence was not compelling that
either of the Type 2 or Type 3 models was superior to the
Type 1 linear model for any of the datasets.
The differences in ln(l), AIC, and AICc between the

unweighted and weighted analyses can be attributed to
accommodating or not accommodating the effects of
heteroscedasticity when calculating ln(l). The only differ-
ence between Equations (5) and (9) is whether a separate or
common value of s2 is used for each observation.
For the weighted analyses, none of the likelihood ratio tests

for curvature in the relationships between wolf density and
BMI for any of the 3 datasets indicated that the quality of fit
of the Quadmodel was statistically significantly greater at the
a¼ 0.05 level than for the Type 1 linear model. This result,
in combination with the similarities in the likelihood
estimates for the Quad model and both the Types 2 and 3
models, suggests lack of significant curvature in the
relationships.
For the Type 2 model, estimates of the asymptote ranged

from 89.39 to 107.33 with standard errors ranging from
52.88 to 65.47. Lower bounds for 95% confidence intervals
for the estimates were less than 0, and upper bounds ranged
from approximately 190 to 235. Thus, the asymptote
estimates were so imprecise as to render them nearly
meaningless. This result can be attributed to multiple causes
including a model that is either poorly formulated or that has

Table 1. Comparison of weighted versus unweighted regressions for wolf density relationships with biomass index (BMI) used by Cariappa et al. (2011) and
this study. Model 1 is linear, model 2 monotonically increases with a monotonically decreasing slope and asymptote, and model 3 is sigmoid with an
asymptote. AIC is Akaike’s Information Criterion, and AICc is the same adjusted for small samples. DAICc is the difference between nested models. Wt is a
relative measure of the fit of a model to data, with larger values indicating better fits.

Dataset Model
No. of model
parameters (p) Sample size ln(l)a AIC AICc DAICc Wt

Unweighted
Cariappa all 1 2 32 �111.1 226.1 226.5 0.0 0.52

2 3 32 �110.0 226.0 226.9 0.4 0.42
3 3 32 �112.1 230.1 230.9 4.4 0.06

Cariappa pruned 1 2 28 �97.3 198.6 199.1 1.7 0.24
2 3 28 �95.2 196.4 197.4 0.0 0.56
3 3 28 �96.2 198.4 199.4 2.0 0.20

Present pruned 1 2 26 �84.5 172.9 173.4 0.0 0.62
2 3 26 �83.7 173.4 174.5 1.1 0.36
3 3 26 �86.4 178.7 179.8 6.4 0.03

Weighted
Cariappa all 1 2 32 �105.8 215.5 216.0 1.0 0.29

2 3 32 �104.1 214.1 215.0 0.0 0.48
3 3 32 �104.8 215.6 216.5 1.5 0.33

Cariappa pruned 1 2 28 �92.0 187.9 188.4 1.5 0.22
2 3 28 �90.4 186.8 187.8 0.9 0.30
3 3 28 �90.0 185.9 186.9 0.0 0.47

Present pruned 1 2 26 �77.7 159.4 160.0 1.5 0.31
2 3 26 �75.7 157.4 158.5 0.0 0.66
3 3 26 �78.9 163.8 164.9 6.4 0.03

a ln(l), log likelihood.
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too many parameters relative to attributes of the data. In
particular, for this study, BMI values corresponding to 90%
of the Type 2 model asymptote estimates ranged from
approximately 140–175, whereas the greatest BMI value in
any of the datasets was less than 15. Thus, any attempt to fit
an asymptotic model to these data should be expected to
produce imprecise estimates of the asymptote and inconclu-
sive results regarding model superiority. Estimates of the
asymptotes for the Type 3 model for the 3 datasets ranged
from 27.64 to 31.71, all considerably less than the greatest
wolf densities observed in the data. This anomalous result
also suggests an inappropriate model relative to the nature of
the data.
Overall, although a Type 2 or Type 3 asymptotic model

produced slightly better representations of the relationship
between wolf population density and BMI exhibited in the
data than the Type 1 linear model, the degree to which they
better represent the relationship is not great enough to be
characterized as statistically significant. Further, the esti-
mates of the asymptotes, particularly their imprecision, for
the Types 2 and 3 models suggest insufficient observations
for large BMI values to justify the asymptotic model forms
and parameterizations. Thus, the general technical result is
that based on the data available, no compelling argument can
be made to reject the simpler, more parsimonious Type 1
linear model in favor of either the Type 2 or Type 3 nonlinear
models.

DISCUSSION

Our findings indicate that, contrary to Cariappa et al. (2011),
the hypothesis that wolf density is regulated by prey biomass
has more support at all biomass values measured to date
(Fuller et al. 2003). Although social factors such as
territoriality and intraspecific strife, age of first reproduction,
and dispersal, as discussed by Packard and Mech (1980) do
operate in wolf populations, ultimately they might only fine
tune basic wolf densities to biomass values at finer scales than
have so far been measured. This conclusion is not all that
surprising given reports of wolf densities in individual pack
territories (Table 2) that far exceed those reported for
population densities used in the Fuller (2003) table. Those
large pack densities evince that at least within packs, social
factors do not limit densities.
Cariappa et al. (2011) also speculated that a putative lower

limit on wolf-territory size postulated by Jedrzejewski et al.
(2007) might have led to the upper asymptote that Cariappa
et al. (2011) found. However, the evidence for a lower
asymptotic territory size is faulty. Jedrzejewski et al.
(2007:74) maintained that “… wolves did not reduce their
territories below a certain asymptotic value (approx. 80–
100 km2), even if prey numbers continued to grow.” Their
evidence Jedrzejewski et al. (2007:Table 5) cited both
individual and territory size and mean population-pack
territory size. Nevertheless, some of the mean territory sizes
they cited included individual territories as small as 50 km2

(Fuller 1989), and these authors overlooked reported
territories as small as 20 km2 (Mech and Tracy 2004;
Table 2). Thus, although failure to reject a null hypothesis

does not constitute proof of the hypothesis, the analyses do
not support either the putative lower asymptote of 80–
100 km2 for wolf-pack-territory size or the proposal of
Jedrzejewski et al. (2007) that social factors determine
minimum pack territory size.
Our results also contradict the conclusion that an upper

density bound of 69 wolves per 1,000 km2 exists in wolf
populations (Cariappa et al. 2011). Instead, we found no
evidence for a maximum wolf density except that dictated by
biomass.
Some subjectivity lies in the selection of data to use in

determining the shape of models relating wolf density to
BMI as evidenced by the different choices made by Fuller
et al. (2003), Cariappa et al. (2011), and our analyses.
Although we agree with the decision by Cariappa et al.
(2011) to delete 4 points from the Fuller et al. (2003) data,
other workers might not agree with them or with our
rationale for deleting 2 more points. However, even if one
agrees with our decision, and even if the questionable
unweighted analyses are used, our analysis clearly demon-
strates that the difference between concluding that wolf
density is regulated by food or by social factors—a 5-decade
controversy—depends on only 2 of 28 data points.

MANAGEMENT IMPLICATIONS

Our analyses indicate that the question of whether wolf
density is regulated by prey biomass or social factors at high-
prey densities should remain open. The most important
information that managers should consider is that, regardless
of what regulates wolf densities, such densities can far exceed
the 69/1,000 km2 proposed as an upper bound under the
model of Cariappa et al. (2011; Table 2). Researchers,
however, should closely examine all possible regulating
factors. As Cubaynes et al. (2014) found, high wolf densities
can increase intraspecific aggression. Although such aggres-
sion in itself may not regulate wolf populations because pup

Table 2. Wolf densities reported in individual wolf-pack territories that
exceed mean wolf-population densities reported by Fuller et al. (2003)

Density
wolves/1,000 km2

Territory
size (km2)

No. of
locations Source

156 64 213 Scott and Shackleton
(1982)

67 75 135 Scott and Shackleton
(1982)

92a Peterson and Page (1988)
59b 153c 94c Fuller (1989)
175c 23 39 Mech and Tracy (2004)
308c 20 44 Mech and Tracy (2004)
182c 33 88 Mech and Tracy (2004)
59d 84 28 Mech and Barber-Meyer

(unpublished)
106e 38 30 Mech and Barber-Meyer

(unpublished)

a Mean of 5 packs.
b Mean of 4 packs.
c The same pack at different periods from October 1997–March 1999.
d Wolf 7,172 pack of 5 during winter from 2 July 2012 to 15 July 2013.
e Wolf 7,175 pack of �4 during winter from 27 July 2012 to 15 July 2013.
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survival and dispersal are also critically important (Mech
et al. 1998, Adams et al. 2008), aggression remains a factor to
be considered and warrants further research on its role in wolf
population regulation.
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